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A resolution of the blow-off singularity for 
similarity flow on a flat plate 
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(Received 18 August 1972 and in revised form 30 July 1973) 

A study is made of uniform flow past a semi-infinite flat plate with a similarity 
injection distribution of boundary-layer magnitude. Attention is focused on a 
solution at exactly the critical injection rate for which classical boundary-layer 
theory predicts the blow-off singularity. Following a description of the more 
recent interaction analyses which also fail a t  the critical rate, a new theory is 
developed which leads to physically meaningful results. I n  particular, it is 
shown that the non-monotonic variation in wall shear with increasing injection 
rate near the critical value, noted by Klemp & Acrivos (1972), is real. A delicate 
interplay of weak pressure interactions and viscous effects is shown to be respon- 
sible for this surprising phenomenon. 

1. Introduction 
The boundary-layer separation phenomenon associated with mass addition 

from a flat plate in a uniform flow has been considered recently by Kassoy (1970, 
1971) and Klemp & Acrivos (1972). These analytical investigations are concerned 
with the process of blow-off arising from a similarity injection distribution of 
boundary-layer magnitude. The earlier work by Emmons & Leigh (1954) based 
on classical boundary-layer theory provided a numerical description of the 
approach to the blow-off condition. They showed that there exists a critical in- 
jection rate at  which the wall shear vanishes. At this value the shear layer is 
located ‘infinitely’ far from the wall (on the scale of the transverse boundary- 
layer variable). The shear-layer solution is described by Lock’s (1951) mixing 
layer. Motivated by this work, Kassoy (1970) developed an analytical description 
of the same problem. He showed how the blow-off condition is approached as the 
injection rate approaches the critical value. It was also shown that the classical 
analysis becomes singular in the mathematical sense as the critical rate is ap- 
proached because of the thickening of the overall flow structure beyond the 
classical boundary-layer magnitude. 

Kassoy (1971) and Klemp & Acrivos (1972) then considered the same physical 
problem for injection rates beyond the critical value but within the context of 
injection of boundary-layer magnitude. The classical analysis was abandoned 
in favour of a weak interaction theory. It was shown that the thickening of the 
injectant layer results in a weak interaction with the external flow which pro- 
duces a small favourable pressure gradient. This pressure effect helps to accelerate 
the injected fluid in a way which permits appropriate entrainment by the free 
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shear layer. This theory was shown to be invalid as the critical rate waa ap- 
proached from above because the assumptions upon which it was based were 
violated. Hence, neither the classical theory, nor the interaction analysis pro- 
vides a description of the flow at the critical injection rate. 

Klemp & Acrivos (1972) remarked that the wall shear distribution is not a 
monotonic function of the injection rate. The Emmons & Leigh (1954) and 
Kassoy ( 1970) boundary-layer theories indicate that the non-dimensional wall 
shear, OfRe-t), becomes vanishingly small as the injection magnitude increases 
towards the critical value. The implication is that the wall shear becomes 
o(Re-4). Then from the interaction theory, where the wall shear is O(Re-%), it 
is observed that, as the injection magnitude decreases towards the critical value 
from above, the wall shear again vanishes. This in turn implies that, in the neigh- 
bourhood of the critical magnitude of injeclion, the wall shear is o(Re-g), a 
more stringent condition than that obtained from the boundary-layer theories. 
This somewhat unexpected non-monotonic vayiation apparently is caused by the 
relative ineffectiveness of the interaction pressure for values of injection near 
the critical value. 

Since both theories fail at  the critical rate, it would appear likely that the 
zero wall shear value is not physically correct. As we shall see, a new theory 
must be developed to provide a proper description of the phenomena. In  the 
present work, a calculation is made for the flow at the critical rate of injection. 
This theory differs fundamentally from both the classical and interaction analyses 
although, as would be expected, it contains elements of each. It is based upon 
the use of several distinguished limits of the Navier-Stokes equations for the 
limit of large Reynolds number. The results indicate that extremely weak viscous 
effects and a pressure interaction combine to produce a small but finite wall 
shear 7, = O(Re-l log Re). Hence, the non-monotonic shear distribution is 
verified. 

Although the calculation in itself may appeas to be somewhat academic, the 
consequences of the result are significant. It shows how the inclusion of a de- 
veloping, weak-interaction pressure gradient precludes the appearance of the 
mathematical singularity a t  blow-off. In  point of fact, when the appropriate 
theory is developed, a well-defined physically acceptable flow is obtained. 

2. Review 
In  order to set the new problem in proper perspective, it is useful to review 

briefly the essential details of the boundary-layer and interaction theories 
mentioned in the introduction. The former is based on the system 

+Y*T,Y - +z+yll = +YVV, 

$11= 1 for x > O ,  y+co 

$ Y = 0, 4 = -C(2x)4 for x > 0, y = 0, 

where non-dimensional boundary-layer variables have been used. The solution 
is sought in the limit a! = C,, - C + 0 + , where ‘7, = 0.87574 is the critical injec- 
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tion rate, Kassoy’s (1970) two-layer analysis consists first of a wall region in 
which 

$(x, y; a) N (2x)i [ - C, + a - (a/log a)  (ecos - Coy - 1) + . . .], 
where 7 = y(2x)-4. The first two terms represent the undisturbed injected fluid, 
while the third term arises from a relatively weak viscous effect which accelerates 
the fluid in the downstream direction. The exponential growth of the latter 
implies that the solution is singular for large 7. The second region, essentially 
a free shear layer, is described by 

$(x2 Y; a) ( 2 4 9  [fO(Z) + ... I, 
wheref, is Lock’s mixing-layer solution and Z = 7 + Ccl log a + . . . . In  the course 
of analysis, it is found that the magnitude of the non-dimensional wall shear is 
7, = p’[pL U2l-l au’(x’, O)/ay’ = O(Re-3a log-l a) ,  where primes denote dimen- 
sional quantities. The location of the zero (dividing) streamline, in terms of an 
Euler (rather than boundary-layer) variable, is given by 8, = O(Re-iloga). 
The latter result, in particular, indicates that the solution is not uniformly valid 
in the limit of large Reynolds number. An a = a(Re) can be specified for which 
the boundary-layer thickness is greater than O(Re-4). Hence, the scaling assump- 
tion used to derive the boundary-layer limit of the Navier-Stokes equation is 
violated. These considerations suggest that in reality 7, = o(Re-4) and the 
overall thickness is larger than O(Re-i)  (but small compared with unity) for C 
sufficiently close to C,. The latter result further suggests that an interaction 
between the relatively thick internal structure and the external flow will lead to 
weak pressure gradients that do not appear in the boundary-layer theory. 

In  an attempt to overcome the deficiencies of the classical theory, Kassoy 
(1971) and Klemp & Acrivos (1972) developed an interaction theory based 
on several different limiting forms of the Navier-Stokes equations, The analysis 
was in terms of a three-layer structure, each with distinct physical character- 
istics. The wall region, O(Re-)) in thickness, is an inviscid rotational layer in 
which a weak interaction pressure gradient O(Re-Q) turns the injected flow. The 
pressure effect arises from an interaction of the relatively thick wall layer with 
the external flow-. Above the wall layer, there appears a free shear layer described 
essentially by Lock’s mixing-layer solution. To lowest order, the weak pressure 
gradient does not influence this flow. 

A matching of the wall- and shear-layer solutions indicates that the former 
must be truncated at  a finite value of the wall-layer variable. The third region is 
the inviscid irrotational external flow described by a uniform potential flow plus 
an O(Re-*) correction caused by the effective displacement body arising from 
the internal structure. A slender-body analysis produces the required interaction 
pressure. The important results for the wall shear and dividing-streamline loca- 
tion are 

T~ = O(Re-*[1 - (C,/C)+]+), 8, = O(Re+[I - (C,/C)$]*). 

The former implies that, in reality, for C sufficiently close to C,, T~ = o(Re-8) 
while the latter shows that the dimension of the wall layer becomes less than 
O(Re-&), thus precluding the validity of the analysis. In  fact, one can show that, 
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when C-C, = O(Re-4)) the location of the dividing streamline in terms of the 
external flow variable is given by 8, = O(Re-i) ,  which is the classical boundary- 
layer magnitude. Hence, the interaction theory can be formally valid only for 
C-C,, 3 Re-$. 

These results seem to suggest that for C = C, the internal structure has a 
thickness somewhere between O(Re-4) and O(Z'e-3) and that the associated wall 
shear is less than O(Re-9). 

3. Problem formulation 
The complete mathematical system describing an incompressible uniform 

flow past a semi-infinite flat plate from which Mass is injected with the critical 
boundary-layer magnitude associated with a similarity distribution may be 
written in the non-dimensional form 

[$,(a/ax) - $x(qay) - eV2I V2$ = 0, $ = $4.) 9; 4, ( l a )  

$,= 1, $ x = O  as x - f  -a, ( I b )  

$, = 0 ,  $Ic = -etC0(2x)d for x > 0 ,  y = 0, (1c) 

where the 'injection constant' C, = 0 . ~ 7 5 7 4 . .  . . The variables are defined with 
respect to dimensional quantities by $ = $'/U& L', x = x'/L' and y = y'/L', 
where U& is the characteristic velocity and L' is some arbitrary length. These 
definitions are identical to those used by Kleinp & Acrivos (1972). The para- 
meter e = Re-l = (UL L'/v ')-~,  where v' is the kinematic viscosity. The operator 
V2 is the two-dimensional Laplacian. 

The dimensional solution of the similarity problem posed in ( 1 )  must be in- 
dependent of the arbitrary length scale L'. Hence the explicit x dependence of 
the solution must appear in terms of the asymptotically large group 

x / s  = Vmx'/v'. 

In  particular a matched asymptotic expansion procedure must be developed 
which is based on the limit x/c + co. The regionci to be considered are a wall layer 
composed basically of injected fluid, a free shear layer which is strongly viscous 
in character and the slightly (but critically) disturbed external uniform flow. 

There are two procedures which may be med to obtain the desired result. 
In  the first, one seeks asymptotic co-ordinate expansions of the form 

W 

g(x, Y; 6 )  N C ani(x/e)fni(Ti), lira (a(n+l)i/ani) = 0. 
n=O z/s-ral 

The subscript i refers to the region of interest arid T~ is the appropriate similarity 
variable. This procedure has the advantage of producing the required similarity 
form directly. The expansions in each region must be substituted into the appro- 
priate form of (1). Then terms of similar order irt a,(x/e) must be grouped so as to 
develop a sequence of ordinary differential equations for thefni(r). If one has a 
good idea of the an sequence initially then the procedure can be carried out syste- 
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matically.-/- In  the present problem the sequence is not apparent at  the outset. 
(And one may examine the final similarity solutions in § 5 to see that guessing the 
proper forms might be difficult.) As a result, the grouping process becomes 
difficult because of the presence of derivatives of unknown ant functions. If the 
possibility of logarithmic modifiers to algebraic orders of x / e  is recognized, then 
it becomes difficult to proceed systematically. Rather one would be inclined to 
use a trial-and-error procedure in which an a,< is assumed so that explicit equa- 
tions for the analogous fWi can be obtained. Then matching could be carried out 
and the results examined for consistency. The presence of unmatchable terms 
would imply that alterations in the expansions were necessary. It would appear 
that this procedure is rather cumbersome. 

The forthcoming process of analysis and the solutions in $ 5  indicate the source 
of the complexity in the present problem. Unlike the problem solved by Klemp 
& Acrivos (1972) the eigenfunction here affects the expansions almost from the 
outset. One may observe the resulting logarithmic effect in the lowest order term 
for the wall shear. In retrospect then, it may be observed that the source of diffi- 
culty is the unexpectedly strong influence of eigenfunctions on the solution. 

An alternative to the procedure described above involves the development 
of limit-process expansions based on the artificial parameter E ;  see Lagerstrom & 
Cole (1955), Chang (1961), Van Dyke (1964) and Cole (1968). Solutions to (1) are 
sought in the form 

03 

g(x,y; 8 )  N E ~ni(e)fni(x,~i), lim (z(n+l\i/&ni) = 0. 
n=O E+O 

The subscript i has the same meaning as above and yi is the appropriately 
stretched transverse variable. The expansion is defined for the limit process 
e -+ 0, x and yt fixed. When this expansion is substituted into the appropriate 
form of (1) it is relatively easy to form unambiguous groupings in the unknown 
sequence.$ This results in partial differential equations for the functions fni. 
One can then obtain appropriate formal solutions and carry out the necessary 
matching procedure. A sequence of the latter operations will lead to specific 
definitions for the Gni. There will remain after each step undefined functions of x 
in the fni .  These are obtained by writing the now known Zni(e) in the form 
Z,,[(E/X) XI, combining them with the appropriatefni and insisting that the solu- 
tion be independent of explicit functions of x. Although these operations are 
algebraically tedious, they do permit a systematic derivation of the solution with 
a minimum of trial-and-error iterations. It is essentially this property which 
makes the artificial-parameter development useful in this problem. 

One can certainly present arguments for using one form of development or 
the other. For some, the presence of the arbitrary length scale in the second 

t Klemp & Acrivos (1972) develop co-ordinate expansion solutions which are essentially 
power series in (z/e)-*. This form is suggested directly by the nature of the wall-layer 
equation. Only in the fourth-order term does the presence of an eigenfunction cause a loga- 
rithmic modifier. 

$ Of course one must ascertain when the square of a larger term is equivalent in magni- 
tude to some smaller term and so forth. This complication arises in the present problem and 
is dealt with in a systematic way. 
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procedure may make the trial-and-error calculation more attractive. For others 
the systematic derivation permitted by the limit-process expansion development 
is more appealing. In  any event the procedures are ultimately equivalent, so 
that the choice of method is, to some extent, immaterial. 

Perhaps it is worthwhile to note here that the solutions in limit-process expan- 
sion form are formally less complex than the final co-ordinate expansions. This 
occurs because the Cz,$ sequence is defined by transcendental expressions which 
must themselves be written as asymptotic expansions in the process of developing 
the co-ordinate expansion. A related phenomenon was discussed by Kassoy 
(1970, 1973). 

4. Solution 
In  $ 2  the classical boundary-layer approach was shown to be valid for the 

injection constant C < C,, while the newer weak interaction theory was limited 
to C > C,. For C asymptotically close to C,, the assumptions upon which the ana- 
lyses were based became invalid. However, i t  should be observed that in both 
cases the basic shear-layer solution is the same. It is reasonable to expect, there- 
fore, that, as the injection constant passes through the critical value, the shear 
layer will continue to be described by Lock's solution. If we inject mass exactly 
at the critical rate C,, it  would appear that, in the neighbourhood of the wall, the 
first approximation to the stream function must be @, = - E%',(BX)~. This result 
follows from the fact that in the inner part OF the free shear layer 

which must match with the wall-layer solution. To lowest order then, the mass 
injected from the wall is totally entrained by the free shear layer. This lowest 
order solution is deficient in several respects. I t  provides no quantitative descrip- 
tion of the location of the dividing streamline with respect to the wall, and no 
indication of a pressure interaction appears. At this point, one is left in a bit of a 
quandary regarding the proper length scaler5 to use in formulating the theory. 
The classical boundary-layer analysis of Kassoy (1970) suggests that, as C --f C, - , 
the dividing streamline is located at a distance from the wall which is larger than 
O(Re-4) in magnitude. On the other hand, the interaction theory implies that, as 
C -+ C, + , the distance measure is less than O(Re-i) .  An application of limit-pro- 
cess analysis to (1 a) for length scales between O(Re-4) and O(22e-i) does not lead 
to a distinguished limit. Since it is clear that the wall-layer thickness in the 
present problem cannot be as large as O(Re-$, we are left with the only other 
scaling that does lead to a distinguished limit: Re-4. As we shall see, this is in- 
deed the correct scaling for the wall layer. This seemingly peculiar result arises 
from a fundamental difference in the behaviour of the wall-layer solutions in the 
interaction theory and in the present work. In  the former, the solution is trun- 
cated at  a finite value of the wall-layer variable, while in the present analysis, 
the solution extends to asymptotically large values of the pertinent variable. 
This phenomenon leads to a shear-layer (or diLviding-streamline) location which is 
slightly larger in magnitude than the thickness of the wall layer itself. This type 
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of behaviour may be observed in Kassoy’s (1970) blow-off description, where the 
boundary layer is formally scaled by O(Re-*) but the dividing-streamline loca- 
tion is O{Re-4 log [ i/(C,, - C)]} for C --f C, - . 

The analysis will be developed in terms of a wall layer O(Re-*) in thickness, a 
free shear layer whose dimension is O(Re-fr) and the external flow. The lowest 
order solutions in each layer are pk = -~4C,(22)*, ~3(22)3$’,,(1;1) and y respectively. 
Here, Po(q) is the similarity solution for Lock’s mixing layer, q is the appropriate 
similarity variable and y represents the uniform stream. 

4.1. Wall layer 

The wall-layer variables are defined by the usual boundary-layer stretching 
transformations : 

7p = .-4p, 4 j  = E-gy. 

It follows from (1 a,  c) and (2) that the wall-layer system may be written in the 
form 

El: - $9 $xz + $x 7pxol = Po - @f%99 + $XXXI? ( 3 b )  

= ‘7 $(%, = -c0(2x)47 ( 3 4  

Here p = (p’ -pL)/pL U z ,  where p: is the static pressure of the undisturbed field 
and p: the reference density. Since the external flow is basically a uniformstream, 
we expect the streamwise pressure gradient pz  to be an asymptotically small 
function determined by an interaction between the injectant layer and the 
external flow. The solution t o  (3) is sought in the form 

where {pn} and {yn} are asymptotic sequences which must be determined. The 
expansions are based on the limit process E -+ 0 ,  x and 9 fixed. Substitution of 
( 4 a )  into (371) implies that pg = 0(epu, ( 8 ) ) .  Hence, for n < n*, where yn. = 0(ep1) ,  
p m  = pn(x). For the calculation to follow the magnitude of the lateral pressure 
gradient is negligible. A matching condition with the shear layer must be speci- 
fied to complete the system. 

4.2. Shear layer 

The free-shear-layer equation may be obtained from (1 a )  by using the trans- 

formations - 
$h = E-B$h, Y = [y  - g(z; .)] 6-3, (5) 

where Y = 0 is defined by 
dividing streamline is assumed to be 

(x ,O)  = 0. The corresponding description of the 

00 

YB = g(x, €1 N C Yn(E) gm(x). (6) 
m= 1 
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The asymptotic sequence is the same as that used in the pressure expansion 
( 4 b ) ,  since the pressure interaction is in essence controlled by the shape of the 
dividing streamline. Since the dividing strearnline is located at a distance from 
the wall which is larger than a classical boimdary-layer thickness, it can be 
asserted that e*< y1 < 1. 

The shear-layer equation may be written in! the form 
/I 1- - - -  

tirP FzY - +X+PP = -Pz + ?YPP + d2+Y Y Y +- 2 q t 4 h T z  - 9 @+PY + €?Yxz* 
(7)  

The pressure gradient is defined by (4 b) .  Primes in (7)  denote differentiation with 
respect t o  x. The third, fourth and fifth term3 on the right-hand side represent 
effects of longitudinal curvature. Solutions to  ( 7 )  must satisfy the dividing- 
streamline boundary condition 

- 
$(x, Y = 0) = 0 (8) 

and appropriate matching conditions with the wall and external-flow layers. 
The former matching condition may be developed by applying the wall-layer 
limit process e + 0, 9 fixed, to (5) in the inside region of the shear layer where 
y < g(x;e) .  Thus, we find 

- 
+(x ,Y+ -m,=$(x,y^+m). (9) 

An application of the Euler limit process e 3 0, y fixed, to (5) suggests that  the 
matching condition with the external flow has the familiar form 

€ 3 $ ( X ,  Y + 00) = $(3:, y 3 0).  

+(x, Y ;  8) N ( 2 ~ ) '  [F,(v) + Iz: vn(e) yn(3, ?)I> 

(10) 

The stream function is assumed to  have the form 
a 

n= 1 

- 
(11) 

where F,(q) is Lock's mixing-layer similarity ;solution, 7 = Y ( 2 x ) d  and {v,(e)} 
is an asymptotic sequence defined for the limit process e -+ 0,  x and Y fixed. 
The lowest order term in (11) may be observed to  match with the basic wall- 
layer solution and the uniform stream. 

4.3. External $ow 
An application of the Euler limit e -+ 0, x and y fixed, to (1 a )  yields the Euler 
equation subject to the uniform-flow boundary condition. It follows that the 
external stream function may be written in the form 

co 

$(x, 9; €1 N Y + C gn(€ )  $n(x, Y), ( 1 2 )  
n= 1 

where {gn(e)> is an asymptotic sequence. The functions $%(x, y), described by 
V2$, = 0 for the cases of interest here, represent corrections to the uniform 
flow due to the presence of the structure in the two internal layers. The boundary 
conditions on +n may be obtained by an explicit development of (10). Thus, com- 
bining ( 5 ) ,  (lo)-( 12), the definition of 7, and th'4 asymptotic behaviour 

F,(rl+m) V - K ,  
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where K = 0.38, we find that 

‘I (13) 
cn = Yn, $&, 0 )  = -g,(x), O(Y,) % € 3  for n < m, 

cm = ywb = €4, $ ~ x ,  0) = -g,,(x) - ~(2x14  for n = m. J 
Classical slender-body theory may be used to show that the pressure inter- 

The specific functional dependence of g,(x) will be obtained in the analysis to 
follow. 

4.4. Higher order solutions 

If (4) is substituted into (3a ,  c), we obtain the system describing the first correc- 
tion t o  the stream function : 

[$+C0(2x)-4- $l = Bplz, 
a!lz a21 P1 

= g1 = 0, 9 = 0. 

The pressure term is included for generality since the ratio yl/pl  < 0(1 )  is un- 
known at  present. A general solution is 

$1 = ~ 1 ~ ~ ~ ~ ~ ~ P ~ ~ 0 ~ ~ - ~ 0 9 - ~ 1 - - -  

9 = $/(2x)&. J 
The form necessary for matching with the shear layer can be obtained from 
(4a ) ,  (9), ( l l ) ,  (15) and the asymptotic mixing-layer behaviour (Kassoy 1971) 

Fo(r -+ -03) - - -co+kexp(C0~)+ ... (k = 1.1502). 
Thus 

(2x)i co + p l ( e )  al (x)  exp (co q) + . . . - (2x)+ [ - co + Ic exp ( c , ~  + . ..)I. (16) 

Matching is completed by writing 7 in terms of $ and e. We find 

7 = 9-€-4(2x)-tg(x;e), (17) 

where g(x; e) is given by (6).  The relevant form of the matching condition, found 
by substituting (17)  into (16) and cancelling the leading terms, is 

pla1(x) = k(2x)texp [- (2x) -~~-~C~(y~g,+y,g ,+  ...)I. (18) 

(19a) 

This equation is satisfied to lowest order if 

y1 = ei log ( l /pl),  g, = (ax): Ccl, 
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These results indicate that the dividing streamline is to a first approximation 
located at a distance from the wall slightly larger (by the factor log ( l / p l ) )  than 
the classical boundary-layer thickness. However, since the basic shape is para- 
bolic, no pressure interaction develops; p ,  = 0. Hence, the first pressure-gradient 
effect can arise at best from the slightly smaller second term y2g2 = O(s3), 
presuming, of course, that a,($) is not proportional to (ax)* .  This function and the 
parameter p,(Re) remain to be found. An examination of higher order stream- 
function equations derived from ( 3 a )  and (4a)  suggests that we may write 

+d[a,(exp (Co+)) -C0dj-- I )  - (2C0)-l(25)%p25+)2] +o(e*). (20)  

If ,a, = st, then we set a, = 0 and use only the last term in ( 2 0 ) .  The form of 
p2(x )  can be found from (14) and (19 b )  once a, has been evaluated. 

The choice of p1 cannot be made by any further manipulations in the wall 
layer. In fact, since only the first exponential term in ( 2 0 )  has been matched, it 
is apparent that the selection follows from matching the algebraic terms in- 
cluding the pressure interaction with corrections to Lock's solution in the free 
shear layer. Of course, recognizing now that the wall-layer solution is a kind of 
linearized boundary layer, one might be tempted to choose p, = €3, the usual 
order of correction t o  the classical boundary layer. However, this choice does not 
lead to satisfaction of the matching condition. 

Rather than carrying out the remaining anadysis for a general p,, we shall here 
specify the result 

and show that the choice satisfies all required conditions. This form of presenta- 
tion is chosen for pedagogical purposes because it permits a rather more concise 
formulation than does the general calculation. It may be noted that the logarith- 
mic factor is necessary because of the presence of eigenfunction solutions in the 
shear layer. 

Once (21) is inserted into (201, a consideration of the similarity requirements 
can be made. Thus, $(2x)-* = $'(2v' Ukx')-i  must be independent of the arti- 
ficial length scale L'. The definition of r^ = $(:!x)-* implies that it is effectively a 
similarity variable. Hence, we need be concerned with onlypu,, a,, a2 and the group 
( 2 ~ ) % p ~ ~ .  The necessary conditions may be obcained by writing 

E = Re-l = x(Rez)-l 

(where the term in parentheses is independent of L'), inserting this form of E into 
( 2 0 )  and (21) and regrouping terms appropriaiiely. This calculation appears in the 
appendix. Thus, the similarity requirement ic; met to O(s*) if 

$ - -Co(~x)~+p la , ( exp(Co~) -Co~-  1 )  

(21) rU.1 = €2 1% (I//%) 

a, = constant, a2 = +a,logx+af, (2x)#pL = constant, (22 )  

where a,* is a constant. The quantity p 2  can be calculated from (14)) (19b) and 
the first part of ( 2 2 ) .  An appropriate evaluation gives 

or 

p2(x)  = 77(2C0)-1 ( 2 4 - 3 ,  

p&) = - 7r(2Co)--1 (224-8. 
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The latter form of the induced favourable pressure gradient is consistent with the 
last condition in (22). 

The asymptotic sequence for the shear-layer expansion in (1 1) can be inferred 
from the matching form of the wall-layer stream-function expansion. In  order 
to construct this expression, we must first combine (B), (17) and (19) into 

(24) c, 9 = - log p, + c, q + Q ( x )  + €-By3 c, g3( 2x)-$ + . . . , 
where Q ( x )  = +log (2k2x/a2,). Similarity requirements imply that 

7, = e+tog2-n(I/pl), g,  = O(xtlogm-2x) (n = 3,4,5,  ...), 

which will be verified in the forthcoming matching for n = 3 and 4. It follows from 
consideration of (3), the forms of expansions suggested above, and similarity 
arguments like those in the appendix that (20) can be generalized to 

where plx = 0, p2x is given in (23) and a, and u2 are given in (22). The form of u3 
is also required to develop the matching expression to the desired order. As 
shown in ( A ~ c ) ,  a3 = - +a,logx+a:, where a t  is a constant. Then, substituting 
(21) and (24) into the generalized $, regrouping terms in the shear-layer form and 
invoking the matching condition in (9), we find 

- 
$(~,$--) +(x,q-f--Co) 

N -CO(2x)++le(2x)-~eQo'1[1 -log-lp1(g3+a2a;1) 

+ log-2p,(gr + +g; + a2a,1g, + a,a,l) + 0(log-3p1)] 

+ e-4 lOg2p,[c,2p, - a, + o( 111 
- e-+ log v,[(C,q + a) (2C,2/32 - a,) - a, - a2 + c:2p3 + o( I)] 

+ e-4 [(Car + 
-a2-a3+C,-2p4+0(l)] +O(s-~log-~p,), (25) 

Ci2p2 + (Coq + Q) (2C;2p3 - a,) +g3(2Cc2p2 - a,) 

where 
p, = - ( ~ Z ) ~ P ~ ( X ) ( ~ C ~ ) - ' ,  g ,  = (2X)-*Cog,, Q = &10g(2k2x/a:). (26) 

The largest explicit corrections in (25) arise from the sequence {O(log-np,)}, 
n = 0,1,2, ... . If one assumes in (11) that vl(e) = log-l( l /p , ) ,  an inconsistency 
will arise for the resulting sequence of F,(z, 7) equations. This difficulty implies 
that the O(log-lp,) sequence must be annihilated since it cannot be matched. 
This can be accomplished if 

g3 = - a,q-l= --+logx-@%-l, (274  

(27 6 )  
g4 = - + g ~ 2 - ~ 2 ~ ~ 1 ~ 3 - a 3 a ~ 1 =  & l o g 2 ~ + + ( ~ ~ a ~ l +  1)logx++a~'ai'-~,*a,', 

where a,, a2 and a3 have been defined previously. These results verify the form 
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of gn. found from similarity requirements mentioned just below (24). The higher 
order pressure interactions, found from (14), i(26) and (27), are 

p3(x)  = -7r(2Co)-l (2x)-4, 

p4(x) = [~nC;llogx--7rC;l( 1 + $a,*n,l)] (2x)-4. 

It is to be noted that the pressure interaction is fully specified except for the 
ratio azla,. 

The remaining terms in ( 2 5 )  suggest that the first three terms of the asymptotic 
sequence in the shear layer are urn(.) = ~-Bl0!3~-?~ ( l / p , ) ,  n = 1,2,3.  Hence, (11) 
may be substituted into (7 )  (where use is made of ( 4 b ) ,  (19) and (23) to find the 
pressure contribution) to find the first three describing equations : 

a :  a 2  

373 o a f  
L(F,) = 2x(FhF,,,-F[FF,,), L = --+F -+F[ (i = 1,2),  (2Sa)  

L(F3) = 24F;  F3,, - Fl F3,J + ZX~;(X;. (28  b )  

The solutions Fn.(x, y)  must satisfy the dividing-streamline boundary condition 
F,(x, 0) = 0, derived from (S), a matching condition for y +- co, which can be 
ascertained (25 ) ,  and a matching condition with the external field. This last 
condition is found by writing (10) in the strea mwise velocity form 

- 
$lp(x, y -+ 00) = +,(x,y -+ 01, 

y = “~(-g, logp,+ Y+g2-g3l0g-lp1+ ...), 

substituting the appropriate expansions and using the relation 

where g,, g, and 9, are specified in (19) and (27 ). It follows after suitable algebraic 
manipulation that 

(29) 

The Bernoulli equation p + &($; + $:) = 4 can be used to relate the stream-func- 
tion derivatives a t  y = 0 to the previously derived interaction pressure gradients. 
We find that 

- 
$&, Y -+ co) N 1 - e4 logp, $,,(.c, 0) + €+$,,(X, 0) + 1.. . 

IlriJx, 0) = -Pi(x) = 0, Ij/2,(x, 0)  = -Pz(x) = - 2Q0,4(2x)-*. (30) 

Then a comparison of the y derivative of (11) with the form developed from ( 2 9 )  
and (30) indicates that for y = Y(2x)-t + co 

Fh = 1, F,, = Fz,, = 0, F,,,, = - 2C0P,(2x)-*. (31) 

Solutions for the Fn systems can now be deveIoped. A careful examination of the 
(x, y)  dependence of the third, fourth and fifth terms in ( 2 5 )  (which provide con- 
ditions on P&x, y -+ - 00)) indicates that these functions should be written in the 
form 

Fl = (24-+f10(7)2 4 = (W-* Cf,O(T) + (log4f21(y)l, (32% b )  

(32c) F3 = (ex)-+ [f30(7) + (log4f3dy) + (log24f3,(y)l. 
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Similarity requirements imply that q(2x)-S  = $‘(2x‘v‘Uk)-B must be indepen- 
dent of L’. If the procedure used in the appendix is applied to the combination of 
(11) and (32)’ it  follows that 

fil = 4 f 3 ~  fro, f 3 1  = &fio-fio* (33) 

Hence, we need to find only the three functions fro, i = 1-3. 

quired definitions therein and the dividing-streamline condition. Thus 
The system describing flo can be found from (25 ) ,  ( 2 8 a ) ,  (31)’ ( 3 2 a ) ,  the re- 

fg + Fo f;o + F; flo = 0 , 

flo(r -+ 00) = flO(0) = 0’ fiO(7 -+-a) = CC2P2 - a,. 

This describes an ‘eigenvalue’ problem for flo(y). The solution may be written 
simply as 

f10 = (CO2PZ - a,) (1 - Wm)). ( 3 4 )  

Similar manipulations for F, verify that the condition on fil in (33 )  is satisfied 
identically. It follows that fiO is described by 

f$+Fof;~+P;f;o = -2(C;2P2--,)Plj, 

&o(r -+ a) = fiO(0) = 0’ 

f20(y -+ - co) = (2C; ,/3, - a,) Coy + ( S C ; ~ P ,  - a,) Q - a, - a: + C t 2 P 3 ,  

fi0 + ~ ~ j ; ~  = - 2(c,pp2 - a,) F; + 17,. 

A 

A 

where s2 = +log (21c2a1,). A first integral of the equation is 

(35 )  

The integration constant l?, and the quantity a, may now be found by evaluating 
(35) a t  00. This results in two equations for the unknowns which lead to 

r, = - 2p2(c ;  + 21-1 = - 0.745, 

a, = 2P2(Cf+1)C;2(C;+2)-1  = 1.71. 
A 

It follows that Q = $log (2k2a,,) = - 0,049.  The solution for f;o(7j) = w can be 
found formally by a pumerical integration of the completely specified system 

V”+F~W’+F;W = -2(/3,C;2-a,)3’lj, 

w(co) = 0, w( -co) = (2P2C;2-a , )Co.  

However, the solution is not compIeteIy specified because the ‘eigenfunction ’ 
P;(r) satisfies the equation and boundary conditions exactly. Hence, fz0(q) must 
be written generally as 

f,o(r) = jh) d7 + K2d1 - p v ; ( o ) ) ’  
0 

where K20 is an unknown constant. When the full boundary condition for 
q + - co is satisfied a single equation for the two unknowns K,, and a: results. 
This indeterminacy arises essentially from the first eigenfunction of Lock’s 
free-sheadayer solution (in a manner analogous to that in the Blasius problem 
(Van Dyke 1964)).  The value of a: is indeterminate since it depends (in this purely 
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similarity problem) on the flow properties near the leading edge of the plate, which 
are not well defined. If the flow were started in a more realistic fashion and only 
asymptotically approached the present similarity solution, then a,* could be 
determined from the requisite initial data. A related indeterminacy was found 
by Klemp & Acrivos (1972) in their higher order interaction analysis. 

The F3 solution is considered in the same manner. Thef,, andf,, systems have 
solutions which verify (33). Finally 

f&+Fof ;o -~ ; f ;o  = -2co/32+.;f;,-~~f,,, 

f&(? -+ = -2c0p2,  f30(’) = O ,  

f30( 7 - a) = /32 q2 + CO 7 [ 2/32 cc2 + 3/33 cc2 - a,*] + o( 1) a 

This system can be analysed in the manner used to considerf,,. It is to be noted, 
however, that the system for fj,(7) is not coinpletely specified owing to the pre- 
sence of the unknown a,* in the O(7) term of 1;he last condition. 

It should be noted that the choice of p1 in (21) has been validated aposteriori. 
Any other choice (i.e. p1 = d) leads to an overspecified system for the choice of 
r2 and a,. 

5. Results 
The formulae for the stream function 4, tihe dividing-streamline location yD 

and the interaction pressure can now be written in parameter form. Thus from 
the appendix and (2i) ,  (23) and (36) we obtain 

m 

n=2 
- (2co)-152(2x)4 c P a 4  logl-n (l/Pl)] + Od@, 

where p, = -dIogp,, m(5) = exp(C,$)-C,$-i, 

a, = 1-71 ..., a2 = $a,logx+a,*, a, = -$a,logz+a:, 

a4 = $a, log2x + $(al - a:) log x +a: log 2 +a,*, 

p 2  = (2Co)-1n(2x)-4 p3 = - (2C0)-ln(2x)-4, (37% b )  

(37 4 p4 = [(4C0)-1n10gx- (2a1c0)-1n(a~ +.%,)I (2x)-i. 

Here the starred constants are indeterminate Sor the reasons discussed previously. 
The symbol O,(s) indicates an algebraic dependence O(s)  with logarithmic modi- 
fiers due to logp,. The dividing streamline is described by 

m 

n=2 

g, = g,log (hi’ ( 2 ~ ) ) ) ~  

Y D  = ~&1(2x)t  €4 log (I/pl) [ 1 + z ($n/gl) 10gl-n (I/~J] + o ~ ( E ) ,  

g, = Ct1(2x)*, k = 1.1502, 

93 = - (2a,)-1g,(a1 log x + 2 4 ,  

g, = g,[+ log2 x + $((a,*/a,) + 1) log x + ~,*~/2a: - a:/al], 
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whichresultsfrom a combinationof (6), (19), (24), (26) and (27). Finally theinter- 
action pressure field expansion, found from (a), has the form 

m - 
P = €4 c. Pn(4 &Fn ( 1 h J  + O M ,  

n=2 

where the first three pn(x) are given in (37). 
The similarity form of these expansions can now be obtained by using (A 3) and 

(A4) for log ( l/pl). After appropriate regrouping of terms it is found that the 
dimensional wall shear stress distribution developed from the stream-function 
formula is 

) + O ( P 3  log2 T)], 

where T = log (Re x) is independent of L’ as required by similarity. The dimen- 
sional dividing streamline is described by 

log T 

Nodear  streaming effects associated The presi 

P’-P with oscillating cylinders 

By A. BERTELSEN, ; 4. 
A comparison of the wall shear stress magnitude for classical boundary-layer 

theory, 7; = O([Rex]-&), and the interaction theory, T; = O([Rex]-#), with that 
in the present analysis , 7; = O( [Re XI-l log x’ ) , shows that the implied minimum in 
the wall shear distribution discussed by Klemp & Acrivos (1972) is real. We may 
now observe that the wall shear is fmite, though relatively small at  the critical 
injection rate. The basic approximation to the wall shear, arising from the second 
term in (20), is observed to be purely viscous in origin. It is only in the slightly 
smaller correction that the interaction pressure force makes a contribution. 
Hence, we see that, at  the critical injection rate, the interaction is still relatively 
weak. Presumably, the latter effect becomes of the same order as the viscous 
effect for C very slightly greater than C,. Of course, for C sufficiently greater than 
C,, the pressure interaction dominates the flow in the wall region. 

The dividing-streamline shape is that of a slightly perturbed parabola. One 
should note that the perturbation is absolutely essential. For an exactly parabolic 
displacement body will produce no pressure interaction a t  all. The non-mono- 
tonic variation in wall shear can now be seen to result from the way in which the 
pressure interaction develops. As C passes through Go, the displacement body is 
perturbed slightly from the parabolic shape predicted by boundary-layer theory. 
The disturbance is smaller in magnitude than higher order viscous corrections 
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to boundary-layer theory ; hence the decreasing segment of the variation. Then 
when C > C,, the displacement body is further distorted from the parabolic 
shape to  an x* distribution. It follows that the interaction pressure is the domina- 
ting force near the wall and the wall shear increases again. 

The philosophy used to develop this similarity solution for injection a t  ex- 
actly the critical rate would appear to be applicable to the problem of describing 
the blow-off regime on a flat plate with uniform injection of boundary-layer 
magnitude. The essential notion is that higher order viscous theory, including 
pressure interaction resulting from locally large streamline slopes, must be con- 
sidered from the start. Presumably a point of exactly zero wall shear will be 
avoided, in analogy with the present problem, and the apparent singularity 
discussed by Catherall, Stewartson & Williams (1965) and Kassoy (1973) will be 
absent. Such a study should provide a transition between the upstream boundary- 
layer flow and the downstream interaction zone (Kassoy 1971; Klemp & Acrivos 
1972). 

This work was supported by NSF GK-24689. The author wishes to thank J. B. 
Klemp for participating in discussions involving the eigenvalue aspect of the 
problem. 

Appendix 

(21) in the limit E: -+ 0. The resulting form is 
The explicit asymptotic expression for log ( l/pl) can be found by expanding 

- logku, = p - 10gp + p-' log,# + p-2 (Q log2/? - log@) + 0(pp3 log3p), (A 1) 

where p = &log(l/€).  (A2) 

Now if 6 = Reh1 = x(Re x)-l is substituted into (A 1) and (A2) and an asymptotic 
expansion is developed in terms of the limit x fixed, Rex + co (implying a vanish- 
ingly small viscosity), then log ( l/pl) can be written as 

-lOgpu, = g(T) - Qlogx + T-llog x + T--' [(210g 2) log T + Q log2 x 
- 2logx(log2+ 1)]+O((logx)T-310g2T), (A3) 

where 
S(T) = &T-( l0gT-10g2)+2T-~( logT- log2)  

+ T-2[21~g2 T + 410g T (  - 1 --log 2 )  + 2 log2 2 + 410g 21 

+ 0 ( ~ - 3 1 0 g 3  T). (A4) 

Here T = log (Rex) is a variable independent of the length scale L'. 
We presuppose that (20 )  can be generalized to 

m 

$(2x)-~ = - C, + ( 2 ~ e  x)-i [ m(9) c an(%) log2-n ( 1/,u1) 
n=l 

m 1 
- (2C0)-1q2&)3 c p:,(x)log2-~((1/p1)~ + ..., 

n=2 

where m(9) = exp (Coil^) - C,? - 1. (This is verified by subsequent developments 
in the main body of the work.) The similarity requirements can be developed by 
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substituting (A 3) and (A 4) into the expansion and insisting that x appear only in 
the group Rex, which is independent of L'. It follows from the substitution that 

m 

C a&) log2-% ( i/,u,) = a,F(T)  + a2 - +a1 log x + T-l(2a3 + a, log x) 
n=l 

+ T-2 log T ( 4a3 + 2a, log x) 
+ T-2(4a4 + ( - 410g 2 + 2 logs) a3 + (&log2 x 
- 2 log x (log 2 + 111 a,} + o ( T - ~  log2 TI. (A 5 )  

a, = constant, (A 6a) 

a2 = +a,logs+a:, a: = constant, (A 6 b )  

a3 = - $a,logz+a,*, a: = constant, (A 6c) 

Hence the L'-independent form results if 

a, =&,log2x++(a,-a,*)logx+a,*log2+a~, a: = constant, (A 6 d )  

where a: = constant, to be found. An analogous calculation must be done for the 
pressure-gradient summation in the $ expression. This leads to the requirement 

( 2 X ) + P W  = P?O, ( 2 x ) b ; ( s )  = 1)3*00, (A 7 a , b )  

(A 7c) (24QPh4 = PZO +P.& 1% z, 

where pfj = constants to be found. 
The results in (A5)-(A7) may be substituted into the $ expression to find the 

required similarity solution. It remains to determine the constants in (A 6) and 
(A 7). 
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